
International Journal of Solids and Structures 41 (2004) 2155–2163

www.elsevier.com/locate/ijsolstr
Analysis of a beam-column system under varying axial
forces of elliptic type: the exact solution of Lam�e�s equation

Alex El�ıas-Z�u~niga

Departamento de Ingenier�ıa Mec�anica, Instituto Tecnol�ogico y de Estudios Superiores de Monterrey,

E. Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico

Received 25 June 2002; received in revised form 20 August 2003
Abstract

We investigate the dynamical response of a beam-column system with hinged ends subjected to an axial pulsating

force of elliptic type. It is shown that the resulting equation is of the form
E-m

0020-7

doi:10.
d2y1
ds2

þ y1½d1 þ d2cn2ðs; k2Þ� ¼ 0;
which is the well-known Lam�e equation [Higher Transcendental Functions, Bateman Manuscript Project, edited by

McGraw-Hill, New York, vol. 3]. In this paper, we obtain the general exact solution of this equation that reveals stable

behavior of the beam-column system if the assigned initial conditions are of the form y1ð0Þ ¼ y10 and _y1ð0Þ ¼ 0. It is also

found that at a certain value of the modulus of the elliptic force, the lateral vibrational frequency is independent of the

material properties of the beam-column system.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we investigate the main physical characteristics of an elastic hinged beam-column system

subjected to a pulsating load of elliptic type. It is well-known that an elastic beam-column with hinged ends

can be put into stable equilibrium by applying pulsating loads at the proper driving frequency (Lubkin and

Stoker, 1943). If the pulsating load is of the sine or cosine type, then the resulting governing equation of

motion reduces to the well-known Mathieu equation whose exact solution is not known and hence,

numerical schemes or perturbation techniques are used to obtain an approximate solution (Kl€otter and

Kotowski, 1943; Stoker, 1950; Porter, 1962; Rand, 1969; Nayfeh and Mook, 1973).

However, when the pulsating load is given as a function of Jacobian elliptic functions, the resulting
Lam�e equation has an exact solution. In this paper, we study the main characteristics of the behavior of a

hinged beam-column under the action of this type of pulsating loads.
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2. Problem formulation

An elastic uniform beam-column with hinged ends and length L subjected to the action of a compressive

varying axial force is shown in Fig. 1. This force is described by
F

f ðtÞ ¼ P þ f �ðtÞ; ð2:1Þ

where P is a compressive stationary force and f �ðtÞ is a periodically varying force with driving frequency X.

It is known (Stoker, 1950) that the differential equation that describes the lateral deflection wðx; tÞ of the
beam-column system is given by
EI
o4w
ox4

þ f ðtÞ o
2w
ox2

þ m
o2w
ot2

¼ 0: ð2:2Þ
In this equation E is the Young�s modulus, I is the area moment of inertia of the cross section, t is the
running time, and m represents the mass of the column per unit length. The boundary conditions are those

corresponding to the case of a hinged beam-column i.e., the lateral deflection wðx; tÞ and the bending

moment M ¼ EIðo2w=ox2Þ are both zero at x ¼ 0 and x ¼ L. Therefore, the boundary conditions for (2.2) at

x ¼ 0 and x ¼ L for all t are:
w ¼ o2w
ox2

¼ 0: ð2:3Þ
These boundary conditions can be satisfied by taking for the lateral deflection wðx; tÞ a solution in the
form of a Fourier series:
wðx; tÞ ¼
X1
n¼1

ynðtÞ sin
npx
L

: ð2:4Þ
Substitution of (2.4) into (2.2) yields
X1
n¼1

sin
npx
L

EI
np
L

� �4

ynðtÞ
�

� f ðtÞ np
L

� �2

ynðtÞ þ m€ynðtÞ
�
¼ 0: ð2:5Þ
If only the first mode of vibration of the beam-column system is considered, then (2.5) reduces to
sin
px
L

EI
p
L

� �4

y1ðtÞ
�

� f ðtÞ p
L

� �2

y1ðtÞ þ m€y1ðtÞ
�
¼ 0: ð2:6Þ
To obtain a non-trivial solution of Eq. (2.6), we must have
€y1ðtÞ þ y1ðtÞ
EI
m

p
L

� �4
�

� 1

m
p
L

� �2

f ðtÞ
�
¼ 0; ð2:7Þ
which represents the governing equation of motion of the beam-column system with hinged ends. Note that

the frequency of the lateral vibration of the beam-column without axial load is given by
f(t)

L

f(t)

w(x,t)

ig. 1. Elastic uniform beam-column with hinged ends subjected to the action of a time varying axial compressive force.
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x2
0 ¼

p4EI
mL4

: ð2:8Þ
Introducing the dimensionless time s ¼ Xt, Eq. (2.7) can be written as
d2y1ðsÞ
ds2

þ y1ðsÞ
EI

mX2

p
L

� �4
�

� 1

mX2

p
L

� �2

f ðsÞ
�
¼ 0: ð2:9Þ
Substituting (2.1) into (2.9) gives
d2y1ðsÞ
ds2

þ y1ðsÞ½d1 þ d�
2f

�ðsÞ� ¼ 0; ð2:10Þ
where
d1 ¼
p2

mL2X2
EI

p
L

� �2
�

� P
�
; ð2:11Þ
and
d�
2 ¼ � p

L

� �2 1

mX2
: ð2:12Þ
Recalling that the Euler load for this beam-column is given by Pe ¼ p2EI=L2 and introducing Eq. (2.8),

the parameters d1 and d�
2 can be written as
d1 ¼
x2

0

X2
1

�
� P
Pe

�
; ð2:13Þ

d�
2 ¼ �x2

0

X2

1

Pe
: ð2:14Þ
If f �ðsÞ is equal to zero, then (2.10) reduces to the case of lateral vibration of a beam-column with static
load P . In this case, Eq. (2.13) represents the dimensionless frequency of lateral vibrations. Note that if

P < Pe then the beam-column system has a simple harmonic response that remains stable. When P reaches

the value of the Euler load, the lateral frequency becomes zero. Under this load there will no longer be any

vibration, and the beam-column is in equilibrium in a slightly deflected form. The case for which P > Pe
produces an exponential type solution of Eq. (2.10) that increases with time. Hence the motion of the beam-

column system is unstable.

Next, we shall study the solution of Eq. (2.10) and the response of the beam-column system when f �ðsÞ is
an axial force of elliptic type.
3. Exact solution of Lamé’s equation

Assuming certain periodic functions for f �ðtÞ, we may show that Eq. (2.10) can be solved exactly. These

functions that provide exact solutions for (2.10) are known as Jacobian elliptic functions; i.e. the Jacobian

elliptic function cnðs; k2Þ and snðs; k2Þ that have a period in s equal to 4Kðk2Þ, where Kðk2Þ is the complete

elliptic integral of the first kind for the modulus k (Byrd and Friedman, 1953). Also, the Jacobian elliptic
function dnðs; k2Þ has a period in s equal to 2Kðk2Þ. Now, let us investigate the behavior of the beam-

column system assuming a periodic driving function f �ðtÞ of the form
f �ðtÞ ¼ acn2ðXt; k2Þ; ð3:1Þ
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where a is the magnitude of the driving force. To make the Jacobian elliptic function cnðXt; k2Þ to be

of period 4p (Hsu, 1974), the relation between the modulus k and the driving frequency X has to be

given by
X ¼ Kðk2Þ
p

: ð3:2Þ
Notice that when k ! 1, the driving frequency X ! 1; and if k ! 0 then X ! 1=2.
Substituting (3.1) into (2.10), and using the dimensionless time s, gives
d2y1
ds2

þ y1½d1 þ d2cn2ðs; k2Þ� ¼ 0; ð3:3Þ
where
d2 ¼ �x2
0

X2

a
Pe

: ð3:4Þ
The initial conditions are assumed to be
y1ð0Þ ¼ y10; _y1ð0Þ ¼ _y10: ð3:5Þ

By defining the relation
y ¼ y1
y10

; ð3:6Þ
then (3.3) can be written as
d2y
ds2

þ y½d1 þ d2cn2ðs; k2Þ� ¼ 0; ð3:7Þ
with appropriate initial conditions. Eq. (3.7) is a special form of the well-known Lam�e equation. This is a

second-order linear ordinary differential equation whose exact solution must have two linearly independent
solutions. We assumed here that one of these linearly independent solution is of the form:
y ¼ cnðs; k2Þ: ð3:8Þ

Substitution of Eq. (3.8) into Eq. (3.7), gives
cnðs; k2Þ½d1 þ 2k2 � 1� þ cn3ðs; k2Þ½d2 � 2k2� ¼ 0: ð3:9Þ

Eq. (3.9) holds for all s if and only if each coefficient vanishes, i.e. provided that
d1 ¼ 1� 2k2; ð3:10Þ

d2 ¼ 2k2: ð3:11Þ

The exact solution (3.8) can be used to find the second linearly independent solution (see O�Neil, 1991,

pp. 113–115). The idea is to look for a second solution of the form
y�ðsÞ ¼ vðsÞyðsÞ; ð3:12Þ
in which v is a nonconstant function of s given by
vðsÞ ¼
Z

1

yðsÞ2
ds ¼

Z
1

cnðs; k2Þ2
ds: ð3:13Þ
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Note that (3.13) has an integral solution (Byrd and Friedman, 1953) given by
1 W

substit

equatio

equatio
vðsÞ ¼ 1

ðk2 � 1Þ k2 s
k2 � 1

k2

� �2
64

0
B@ þ

Eðw; k2Þ cnðs; k2Þ2 þ 1
k2 � 1

n o

dnðs; k2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2snðs; k2Þ2

q
3
75� dnðs; k2Þsnðs; k2Þ

cnðs; k2Þ

1
CA; ð3:14Þ
where Eðw; k2Þ represents the incomplete elliptic intergral of the second kind and w ¼ amðs; k2Þ is called the

amplitude. Substitution of Eq. (3.14) into Eq. (3.12) provides the second linearly independent solution
y�ðsÞ ¼ cnðs; k2Þ
ðk2 � 1Þ k2 s

k2 � 1

k2

� �2
64

0
B@ þ

Eðw; k2Þ cnðs; k2Þ2 þ 1
k2 � 1

n o

dnðs; k2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2snðs; k2Þ2

q
3
75� dnðs; k2Þsnðs; k2Þ

cnðs; k2Þ

1
CA: ð3:15Þ
Thus, the general exact solution of Lam�e�s equation becomes 1
yðsÞ ¼ cnðs; k2Þ C1

0
B@ þ C2

ðk2 � 1Þ k2 s
k2 � 1

k2

� �8><
>:

2
64 þ

Eðw; k2Þ cnðs; k2Þ2 þ 1
k2 � 1

h i

dnðs; k2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2snðs; k2Þ2

q
9>=
>;

� dnðs; k2Þsnðs; k2Þ
cnðs; k2Þ

3
75
1
CA; ð3:16Þ
where C1 and C2 are integration constants that can be determined from the assigned initial conditions. For

instance, if the initial conditions are assumed to be given by yð0Þ ¼ 1 and _yð0Þ ¼ _y0 then C1 ¼ 1 and C2 ¼ _y0
and hence our solution (3.16) grows without bounds as time s increases and hence, the beam-column system

has unstable behavior no matter what values are chosen for a, P , and k that satisfy relations (3.10) and

(3.11). But if we choose the initial conditions to be given by yð0Þ ¼ 1 and _yð0Þ ¼ 0, the integration constants

become C1 ¼ 1 and C2 ¼ 0 and hence the exact solution of Lam�e�s equation becomes bounded for all time s.
Recalling Eqs. (3.10) and (3.11) and if the value of the modulus k, or d2, is given then we can find d1 and d2,
or k and d1, and then the values of a and P , from (2.13) and (3.4), for stable beam-column behaviour. Note
that for all values of d1 and d2 obtained from Eqs. (3.10) and (3.11), the solution (3.8) is bounded and stable.

Fig. 2 shows the variation of d1 and d2 with X where it can be seen that these curves intersect at the value of

X ¼ 0:5365 rad/s for which d1 ¼ d2 ¼ 1=2.
Fig. 3 shows the plots of d1 and d2 versus the modulus of the Jacobian elliptic function k. Note that d1

and d2 intersect at k ¼ 1=2.
Now, using (3.10) and (3.11) and recalling Eqs. (2.13) and (3.4), it is possible to obtain the relation

between the Euler load Pe and the axial forces a and P :
Pe
ðaþ P Þ ¼

x0

X

� 	2
x0

X

� 	2 � 1
: ð3:17Þ
Notice from Eq. (3.17) that the driving force a is in tension as long as 0 < x0=X6 1. It is also seen in Fig.

4 that when 0 < x0=X6

ffiffiffi
2

p
=2, jaþ P j > Pe. In this case, small oscillations of the beam-column system in
e know from (Magnus and Winkler, 1979) that Lam�e�s equation (3.7) can be transformed into an equation of Ince�s type by

uting s ¼ amðu; k2Þ and thus, our exact solution derived here for Lam�e�s equation also holds for Ince�s equation and for all other

ns that can be cast into an equation of this type. We shall not elaborate any further the details of the exact solution of Ince�s
n and leave this for publication elsewhere.



Fig. 2. Plot of the d1 and d2 versus the driving frequency X. Notice that these curves intersect at the value of X ¼ 0:5365 rad/s.

Fig. 3. Plot of d1 and d2 versus the modulus k.

Fig. 4. Frequency response diagram.
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the neighborhood of its undeflected position are stable. When the ratio x0=X approaches the resonance

condition of the beam-column system, the ratio Pe=ðaþ P Þ becomes indeterminately large. This corre-

sponds to the case for which the magnitude of the tension driving force a becomes close to the value of the

compressive stationary force P . For any further increase in the frequency ratio x0=X, the magnitude of the

ratio Pe=ðaþ PÞ approaches asymptotically to the value of one. Thus, the magnitude of ðaþ P Þ that is

acting on the beam becomes close to the magnitude of the Euler load Pe.
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Since the intersection points in Figs. 2 and 3 correspond to the value of x0=X ¼ 1=
ffiffiffi
2

p
at which jaj ¼ Pe

in Fig. 4, the value of the lateral vibrational frequency of the beam-column system is found to be

x0 ¼ 0:3794 rad/s in which Eq. (3.2) has been used. Note that the value of x0 is independent of the elastic

material properties of the beam-column system. Therefore, the following can be concluded:
The value of x0 ¼ 0:3794 rad/s represents a universal constant frequency of the lateral vibration of a hinged

beam-column system, valid for any elastic material for which the Euler load Pe and the absolute value of the

pulsating load a are equal. Substitution of this value into Eq. (2.8), gives the relation for which the pulsating

and Euler loads are equal
Fig. 5.
Peu ¼ 0:1439
mL2

p2
: ð3:18Þ
The above equation shows that the load is independent of the Young�s modulus and therefore, the

following can be concluded:

The universal load Peu, for which jaj ¼ Pe, valid for any kind of elastic material and given by (3.18) depends

only on the mass m and the length L of the beam-column system.

3.1. Stability–instability chart

Eq. (3.7) contains only three parameters, to say k, d1, and d2. The parameter k represents the modulus of

the jacobian elliptic function cn and it is related to the driving frequency X through Eq. (3.2). The

parameter d1 is related to the static load P while d2 depends on the magnitude of the driving force a. It
is well-known that for arbitrary values of these parameters that do not follow relations (3.10) and (3.11),

the general solution of Eq. (3.7) may be stable or unstable. Since Eq. (3.7) is an equation with periodic

coefficients, we may determine the stability–instability chart by using numerical integration in conjunction

with Floquet theory (Rand, 2001).

Fig. 5 shows a typical stability–instability chart for the Lam�es equation (3.7) for the value of k ¼ 1=2.
The shaded (unshaded) regions of the chart indicate values of d1 and d2 for which the solutions are stable

(unstable). This stability–instability chart is similar to the one obtained by Greene et al. (1997) with the

difference that they plotted it for the value of k ¼ 1=
ffiffiffi
2

p
and for positive values of d1 and d2.
Stability–instability chart for the Lam�e�s equation obtained from the numerical solution of Eq. (3.7) for the value of k ¼ 0:5.
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Recalling Eqs. (2.13) and (3.4), we may obtain a relation between the driving force a and the Euler load

Pe:
a ¼ � d2
d1

ðPe � P Þ: ð3:19Þ
We can see from Fig. 5 that in some regions of the stability–instability chart the value of the driving force

a is bigger than the Euler load Pe. For instance, if we take the value of P ¼ 0 and if we pick the value of

d1 ¼ �1 and the value of d2 ¼ 2 and in accordance with (3.19), the driving force is twice that of the Euler

load without producing lateral buckling in the beam-column system. Similar conclusion can be drawn if we

take the values of P ¼ 5=9Pe, d1 ¼ �2, and d2 ¼ 9. Thus, there exist set of values of d1, d2, and P for which
a > Pe without causing buckling in the beam-column system.

Finally, if the the driving forces are replaced by either
f �ðsÞ ¼ asn2ðs; k2Þ þ bcn2ðs; k2Þ; ð3:20Þ

or
f �ðsÞ ¼ asn2ðs; k2Þ þ bcn2ðs; k2Þ þ cdn2ðs; k2Þ; ð3:21Þ

the resulting equation of motion (2.10) also has exact solution. We shall describe this procedure in future

work.
4. Conclusions

The effects of applying an axial force of elliptic type to a hinged beam-column system have been studied.

It was shown that under these type of loads, Lam�e�s equation has a closed-form solution. Special focus was
given for describing the dynamical response of the system by using the obtained closed-form solution. It

was observed that when 0 < x0=X < 1=
ffiffiffi
2

p
, the absolute value of the magnitude of the axial loads is larger

than the Euler load without producing lateral deflection on the beam-column system. At the frequency ratio

value of x0=X ¼ 1=
ffiffiffi
2

p
for which k ¼ 1=2, we found that the value of the lateral vibration frequency of the

beam-column system is independent of the material properties and that the absolute value of the pulsating

load is equal to the Euler load.

It was also shown that for certain set of values of the parameters d1, d2, and P , the driving force a is

bigger than the Euler load without producing lateral buckling in the beam-column system.
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